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Here, we have studied the propagation of an arbitrary disturbance bounded in 
space on an arbitrary two- or three-dimensional transonic flow. First we have 
presented a general theory valid for an arbitrary system of n first-order quasi- 
linear partial differential equations and then used the theory for the special case 
of gasdynamic equations. I f  a disturbance is created in the neighbourhood of a 
sonic point, only a part of the disturbance stays in the transonic region and it is 
bounded by a wave front perpendicular to the streamlines. This part of the 
disturbance is governed by a very simple partial differential equation and the 
problem essentially reduces to the discussion of one-dimensional waves. The 
disturbance decays in the neighbourhood of the points where the flow acceler- 
ates from a subsonic state to a supersonic state and it attains a steady state 
where the flow is decelerating. 

1. Introduction 
Both the exact and approximate solutions of two-dimensional steady equations 
of motion of a polytropic gas have established beyond doubt the theoretical 
existence of continuously accelerating and decelerating, isentropic, mixed 
transonic flows past solid boundaries or through the converging or diverging 
nozzles. Theoretically then, a fluid element should be able to accelerate continu- 
ously from a subsonic state to a supersonic state and vice versa. Continuous flows 
accelerating steadily through the speed of sound could always be obtained but 
most of the early experiments showed that a shock wave necessarily appears 
where a continuously decelerating flow should exist according to theoretical 
predictions. Kantrowitz (1947) studied the stability of quasi-one-dimensional 
steady transonic flows by superposing unsteady disturbances and came to the 
definite conclusion that a flow in a Lava1 nozzle continuously accelerating 
through the speed of sound is stable but the reversed flow is unstable and the 
downstream part of latter will be replaced by an accelerating flow terminated by 
a shock wave. A study of the stability of two-dimensional plane flows past an 
aerofoil surface was done by Kuo (1951) and his conclusion that two- dimensional 
flows decelerating continuously through the speed of sound are also unstable 
was not in contradiction with the early experimental results of his time. The 
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faith in the instability of a continuously decelerating transonic flow grew stronger 
when other arguments (Spee 1971) such as the non-existence of neighbouring 
flows (Morawetz 1964) poured in. However, Pearcy (1962) evolved the concept of 
a peaky pressure distribution and showed that for all practical purposes shock- 
free flow around aerofoils could be experimentally realized. Recent theoretical 
and experimental investigations at NLR (Nieuwland 1966; Nieuwland & Spee 
1968; Spee 1971) have shown that two-dimensional transonic continuously 
decelerating flows are not unstable in the strict sense and it will be possible to 
obtain these flows experimentally as closely as possible if we can reduce model 
imperfections and boundary-layer effects. Spee has stressed that Kuo’s approxi- 
mate analysis is very similar to the one-dimensional case of Kantrowitz, and if 
essential two-dimensional effects are considered, the upstream-moving waves 
originating in the subsonic region near the tail (or in the wake) are no longer 
trapped in the supersonic region but penetrate through the decelerating part 
of the flow owing to the turning effect and thus move out of the transonic region. 
The reason for the turning of the wave front is the variation in the flow variables 
normal to the surface of the aerofoil. Prom their work on the stability of almost 
shock-free decelerating flows, Nieuwland & Spee (1968) conclude that the old 
‘transonic controversy ’ can be regarded as definitely settled. However, there are 
possibilities of trapped pulses in the transonic region, especially if the origin of 
the disturbance is near the sonic line (Spee 1971, figure 18). Even if the pulse is 
not trapped the detailed history of the pulse and nonlinear steepening have not 
been fully discussed. For this quantitative discussion, we need a ‘local’ approxi- 
mation of the differential equations in the neighbourhood of a sonic point. The 
numerical solution of Spee for the location of the wave front does give a good 
qualitative picture of the unsteady waves on a given transonic flow but the present 
state of knowledge in the subject seems to be incomplete. 

In  the present paper we have tried to give a unified theory for two- and three- 
dimensional flows by deriving an approximate equation which governs the propa- 
gation of pulses moving slowly on a transonic flow. We first find that the results 
of Kantrowitz can be easily deduced from the general theory of Kulikovskii & 
Slobodkina (1967) on the equilibrium of one-dimensional steady solutions at  
singular points, the unsteady solutions being governed by a general system of 
quasi-linear partial differential equations in two independent variables. We 
first extend Kulikovskii & Slobodkina’s theory for one-dimensional steady solu- 
tions to multi-dimensional steady solutions of a general system of quasi-linear 
equations and then use it to study wave propagation on two- or three-dimensional 
steady transonic flows. If a disturbance is created in the transonic region, only a 
part of the disturbance bounded by a wave front normal to the streamlines stays 
in the transonic region. This part of the disturbance is governed by a very simple 
partial differential equation and the problem essentially reduces to the discussion 
of one-dimensional waves and does not differ significantly from that of Kantro- 
witz. The approximate equation depends on the steady flow through a single 
parameter proportional to the acceleration of the fluid elements when they cross 
the sonic speed. The disturbance decays when flow is accelerating and i t  attains a 
steadyrstate when it is decelerating. This shows that even in the present theory 
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we have not been able to take two- and three-dimensional effects properly into 
account, but a systematic derivation of the approximate equation shows that 
quasi-one-dimensional waves are important, a t  least in the neighbourhood of the 
points on the sonic surface and for local disturbances bounded in space. The 
turning effect discussed by Spee is not a local property. We can have only ‘almost’ 
shock-free transonic flows in experiments and it is impossible to get rid of the 
weak shocks. This is explained by the present theory of local waves. A wave 
which originates in the wake in the subsonic flow downstream is certainly not 
local. Another point which we wish to emphasize is that, when the disturbances 
are created unintentionally in the wake or near the sonic line, they will be random 
in nature, i.e. the distribution of w (see Q 3) with ( will be such that the algebraic 
sum of the areas of all disturbances in the (, w plane will be almost zero. Since our 
analysis shows that equal positive and negative areas of disturbances cancel 
each other and the original steady flow is recovered, we conclude that a continu- 
ous decelerating flow is stable, but very weak shocks may be present at random. 
We also believe that we shall be able to take two- and three-dimensional effects 
fully into account in our future work. 

In  almost all theoretical investigations on transonic flows, the assumptions 
that the motion is isentropic and irrotational have been made. Here, we proceed 
with original equations without making any of these assumptions anywhere in 
our analysis. Throughout this paper, we use the convention that a repeated suffix 
in any term represents the sum over the spectrum of the suffix. We assume the 
spectrum of the suffixes i, j and 3G to be 1,2 ,  . . ., n; of a and p to be 1 ,2 ,  3 and of p 
to be 1 and 2. 

2. Equations of motion and the pulse geometry 
If ql, q2 and q3 are the three components of the particle velocity, p the pressure, 

p the mass density, xl ,  x2 and x3 the three spatial co-ordinates and t the time, 
the equations of motion of an inviscid non-conducting polytropic gas are 

where Aij = Sij, u.1 = q1,u.2 = q2, u.3 = q3, u.4 = P, u.5 = p, (2.2) 

(2.3) 

(2.4) 

1 
Qa 0 0 p-1S1, 0 

0 Qa 0 p-1S2, 0 

[B$)] = 0 0 qa ~ - % a  0 

pa2a,a pa2’2a pa2s3a 4, 0 

- @la ~ 4 . a  ~ ’ 3 ,  0 qa 

a2 = YPIP, 

1 
and Sij is the Kronecker delta. For a polytropic gas, the local speed of sound a is 
given by 

where the constant y is the ratio of the specific heats. 
46-2 
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If we create a continuous disturbance bounded by a wave front whose normal 
is given by the unit vector n (n,, n2, n3), the velocity of the front (i.e. the charac- 
teristic velocity) is a root of the characteristic equation in A: 

InaB$)-hAijl = 0. (2 .5)  

We select the unit normal in such a manner that the angle between the vectors 
n and q is less than or equal to &r. Since there are five roots of (2.5), any distur- 
bance will break up into five modes and the part of the disturbance moving up- 
stream in the flow will move with the velocity h = c, where 

c = n,q, + n2q2 + n3q3 - a. 

The corresponding bicharacteristic velocity components, denoted by xu, are 
given by 

(2.6) 

dx,/dt = xa = qa-ana. (2.7) 

Let us consider a steady flow given by 

ui = %io(Xa) (2.8) 

and let us assume that the state at the point X* is sonic. Then X* can be an arbi- 
trary point on the sonic surface and the value c* of c a t  x* is 

c* = n,q?+n2qz+n3q:-a*, (2.9) 

where a*2 = q:2 + q z 2  + q g 2 .  (2.10) 

In  n space, the equation c* = 0 represents a plane passing through the point 
n = a*-, q* and 1 - n,(q:/a) represents the length of the perpendicular drawn 
from n to the plane. Since n lies on the unit surface about the origin, it follows that 
c* is negative for all values of n except for n = u*--lq*, where it attains its maxi- 
mum value, zero. As we assume the angle between the two vectors n and q to 
be less than or equal to in, we can easily show that no other root of the characteris- 
tic equation (2.5) vanishes at a sonic point. We therefore conclude that the part 
of the disturbance which can stay in a small neighbourhood of a sonic surface 
for a time interval of the order of unity must be bounded by a wave front normal 
to the streamlines, since it is only for a wave front with normal n = a*-lq* that 
the front velocity c vanishes a t  a sonic point. As the states at  different points of a 
disturbance propagate with bicharacteristic velocity x and since x,* = 0 for 
n, = qX/a*, it follows that this part of the disturbance actually stays in the small 
neighbourhood of a sonic point for a time interval of the order of unity and must 
be responsible for any instability of a continuous flow which is not obtained 
experimentally. The vanishing of all components of the bicharacteristic velocity 
is, perhaps, the most important property of a point on a sonic surface. 

In  order to see the effect of the geometry of the front on these trapped waves, 
we consider a two-dimensional uniform sonic flow in the positive-x, direction and 
a disturbance which may be either on the left or on the right of a slightly curved 
wave front. A point on the wave front where the normal has a greater inclination 
to the x, axis will move with a greater speed in the negative-x, direction. There- 
fore, the wavefront convex to the sonic flow will ultimately become plane and 
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FIGURE 1. Disturbances on uniform sonic flow in x1 direction. (a) A wave front convex to 
the sonic flow tends to become plane and perpendicular to the streamlines. (b) A wave 
front concave to the flow tends to become more curved. 

perpendicular to the streamlines (figure I a). On the other hand, the wave front 
concave to the flow (figure I b)  will become more curved and will move away from 
its place of origin. In  the second case it is difficult to predict the full history and, 
probably, it is not important for us as the wave front will not remain for a suffi- 
ciently long time in a small transonic region. 

We also note that the change in the velocity c* due to small changes in nu from 
the values qz/a* is of second order in nu - q,*/a*. Therefore, in the following dis- 
cussion of the stability of transonic flows, if we neglect second-order terms we can 
assume that the wave front is plane and perpendicular to the streamlines. 

3. Derivation of the approximate equation in the neighbourhood of a 
critical point 

It is possible to derive the approximate equation governing the propagation of 
'transonic pulses' for a more general system of equations than (2.1) without 
introducing any extra complication and, therefore, we shall consider here a 
general system of n first-order quasi-linear partial differential equations in four 
independent variables t ,  xl, x2, and x3: 

(Qj= 1 , 2  ,..., n ; a =  1,2,3) ,  

where A,,, B$) and C, are functions of xa and u, and do not depend on the time 
t explicitly. Let us consider a known steady solution 

ui = uidxu) (3.2) 

of equations (3.1) and let x* be 8 Gxed point of the space. We denote the value of 
a quantity Q in the steady solution (3.2) at the point x* by &*. Thus 

ut = uio(z2), Atj = A , , { u k o ( ~ ~ ) ,  $}, etc. (3.3) 

We consider a disturbance of sufficiently small amplitude and bounded by a 
plane wave front in the neighbourhood of the point x*, the normal of the wave 
front being given by the unit vector n. The velocity of the wave front is a solution 
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of the characteristic equation (2.5), which gives, in general, n values of A. We 
now make two assumptions about the system (3.1). 

Assumption 1. The characteristic equation (2 .5 )  has a root h = c(ui, xu) which 
is simple and real. 

This implies that the rank of the matrix 

[nu B$) - cAii] (3.4) 

is n - 1 and there exist unique (except for a constant factor) left and right eigen- 
vectors 1 = [ I I ,  I,, . . ., ZJ and r = [rl, r,, . .., r,] satisfying 

I, nu B$) = cl{ Aii, nu B$) ri = cAiiri. (3.5) 

No assumption has been made about any other root of (2.5). The assumption 
that c is a simple root has been made in order to avoid the complications of a more 
general theory. We can easily extend the analysis to the case where its multipli- 
city s is greater than one (Bhatnagar & Prasad 1971). 

By the lemma on bicharacteristic directions (Courant & Hilbert 1962, p. 597), 
the component xu of the bicharacteristic velocity in the xu direction is given by 

xu = (IiB$)rj)/(ZiAijrj). (3.6) 

Assumption 2. Each component of the bicharacteristic velocity vanishes in the 
steady solution at the point x*, i.e. 

xz = 0 or 1; B$’*rT = 0. 

We define the ‘critical point’ in a steady solution as a point where assumption 2 
is satisfied. 

Since the states at different points of a disturbance in a wave motion are 
actually carried along the bicharacteristics, we expect the value c* of the front 
velocity to be zero. We can easily verify this from the second assumption and the 
relation 

c = (Z, nu B$)rj)/(Zi Aijrj). (3.7) 

t‘ = t ,  6 = na(xu-x2),  qp = aLp)(xa-xz), p = i , 2 ,  (3.8) 

We introduce a new set of independent variables (t’, 6 ,  ql, 7,) by defining 

N = ail) ail) [ ;) ;’ 
where the matrix 

is orthogonal. At any instant the wave front is now represented by 6 = constant. 
The axes yl and q, lie in a plane parallel to the wave front. The system (3.1) 
reduces to 
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of the steady solution is described by the system 

< = B,j(uk,x,)- auj0 +D$’(u~,x,)- aui0 +Ci(uk,xa). (3.13) 

We assume each of the perturbations vk to be a small quantity of order 6. 
Expanding the various terms on the right-hand side of (3.13) and using the 
equations 

auj0 (3.14) 

86 8% 
where 

athi, 

a t  8% 
B,ii(ZLk07 xe) - + D‘$y)(UkO, xa) - f Ci(@’kO7 %a) = 

we get in a neighbourhood (with linear dimensions of order 6 ) of the point x* 

4 = ~~&Vk+O(S2) ,  (3.15) 

(3.16) 

Since we wish to study waves for which the wave fronts remain in the neigh- 
bourhood of the plane 5 = 0 for a time interval of order unity, we need t o  approxi- 
mate equations (3.12) over a domain in which 5 = O(S) and each oft’ and rp  
is of the order of unity. Using 

= 8-16 (3.17) 
we write (3.12) in the form 

A,j-+BBij‘+DI$’)-+C avj 1 av. avj = 0. 

at’ at’ 8% 
Substituting 

V k  = v p + s u p +  ... 

(3.18) 

(3.19) 

in (3.18), expanding various terms and equating terms of orders unity and S we 

~;a~plac = o (3.20) 
get 

and 

where ABii represents the first term in the expansion of BU(ukO + vk,  xa) - BG. 

pand it in the form 
The velocity c vanishes in the steady solution at  6 = 0, qp = 0; and we can ex- 

c = C(l)+C(2)S+ ...) (3.22) 

where c(1), c(2) etc. are of order S. Expanding both sides of (3.7) we get 

c(l) = {Z:(ABij) r:]/(ZFA:frT). 

The general solution of equations (3.20) is 

v y  = W’, k-3  sp) rj* + g#’, r p ) 7  

(3.23) 

(3.24) 
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where w and gi are arbitrary functions of their arguments. Substituting (3.24) 
in (3.21), multiplying the resultant by ZT, using assumption 2 and dividing by 
1; A$ rj* we get 

(3.25) 

where K = - (l:B’:vjrf)f(Z~Ai*jrj*) (3.26) 

ao aw 
Kw +f(t’, ID)> - + ($1) - = 

at’ at 

where 

and 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Equation (3.24) shows that, in the neighbourhood of the critical point x*, the 
n dependent variables can be expressed in terms of the arbitrary functions w 
and g,, of which only w varies significantly with t. The value of the functions gi 
can be determined by knowledge of the unsteady solution lying outside the small 
neighbourhood of the plane 6 = 0. If we assume the waves to be bounded in space, 
the functions #(t’, qp) andf(t’, qp) can be taken to be zero. For such disturbances, 
(3.25) reduces to 

(3.33) 

where we have used the transformation 

51 = t + (c,p/cc) I p ,  I;, = I p  (3.34) 

for the spatial co-ordinates. Under this transformation a/a& = a / a f  and hence 
aw/a& still represents the rate of change of w in the direction n. Having derived 
the final equation, it will not be confusing if we drop the prime from t‘ and the 
suffix from t1 for the simplicity of the notation. Our approximate equation for 
the waves in the neighbourhood of the critical point finally takes the form 

(3.35) 

The co-ordinates rl and yz can be treated now as parameters and the problem 
reduces to the discussion of one-dimensional waves governed by (3.35). The 
expressions for the coefficients ct and K contain (azc,/ax,)* and hence the approxi- 
mate equation depends on the basic steady solution (3.2). We may be tempted 
to eliminate these derivatives by means of a suitable transformation (Bhatnagar 
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& Prasad 1971) in order to get a single approximate equation valid for the per- 
turbations of an arbitrary steady solution. However, such a transformation is 
not possible in two- and three-dimensional spaces as K depends not only on 
(au,/ac)* but also on (au&,)*. 

4. Propagation of transonic pulses 

at an arbitrary point x* of the sonic surface by the root 
From the discussion in $ 2, we find that the two assumptions in $3 are satisfied 

h = c = n,q,+n2q2+n3q3-a (4.1) 

n, = q,*/a*, q:q: = a*2. (4.2) 

provided that we select the normal n such that 

Thus an arbitrary point of the sonic surface is a critical point in the neighbourhood 
of which a part of the disturbance will stay for a time interval of the order of unity. 
In  this particular case 

a* 0 0 qTIp*a* 

0 a* 0 43P*a* 

0 0 a* q:/p*a* 
p*a*qT p*a*q; p*a*q: a* 

_p*q;/a* p*q;/a* p*q:/a* 0 

1, - q,, 1: = - l /p*,  1; = 0, * -  * 
r,* = q,*, rz = -p*a*2, r, * = -p*, 

c, = g(y+ l)a* 

0 

0 

a* .j 
a* * 

and (4.7) 

Making use of the orthogonal property of the matrix N and substituting C = 0 
we get the following expressions for F:v,rf from (3.16) after a few lengthy calcula- 
tions : 

(4.8) 

(4.9) 

and (4.10) 

F* 4 9  r* 7 a* ($)* -yp*a*2 [$ (%)* + a ~ p )  (%)*I 

From (2.2), (4.4), (4.5) and (4.8)-(4.10) we have 

1: F&rz = a* q,* (%)* + y ~ * ~  [$ (%)* + uLp) ($)*I (4.11) 

and 1:AF.y) 27 3 = 2a*2. (4.12) 
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When we transform the derivatives in the second term of (4.11) into derivatives 
with respect to xi and use the expression (3.26) for K we get 

The steady equations corresponding to equations (2. I )  give us 

and 

(4.13) 

(4.14) 

(4.15) 

When we use the relations (4.14) and (4.15) in (4.7) and (4.13), we get 

K = - c  5 - - - i(Y + 1)  (aq/at)*, (4.16) 

where the quantity (aq/a[)* represents the space rate of change of the fluid speed 
at  the point x* as we move along the streamline in the steady solution and is 
equal to the acceleration of the fluid element divided by a*. 

Thus the approximate equation governing the propagation of the waves in the 
neighbourhood of an arbitrary point on the sonic surface is given by a simple 
equation 

aw am 

at at - + ( c , w - K [ ) -  = Kw, (4.17) 

which depends on the steady flow only through the single parameter K given 
by (4.16). The perturbations in the flow variables are proportional to the variable 
w and are given by 

Aq, = qzw, Ap = -p*a*%, Ap = -P*w,  (4.1s) 

where = qa-qao, AP = P - P O ,  AP = P-PO.  (4.19) 

We have derived the equation (4.17) for a general three-dimensional flow which 
may not be irrotational and in particular we can use it for any two-dimensional 
or axisymmetric flow. A simple example involving all possible values of the 
parameter K is a two-dimensional high subsonic flow past an airfoil placed with 
its axial parallel to the stream. For a suitable contour, it  is possible to have a 
continuous mixed flow with an embedded supersonic region attached to the body 
as shown in figure 2. 

The characteristic equations of the partial differential equation (4.17) are 

(4.20) 

The general solution of these equations is 

w = woeKt,  t = (c,/K) wo sinh Kt, (4.21) 

where wo and to are the values of w and [ at t = 0 on the characteristic. The sonic 
point w = 0,  = 0 is a singular point of (4.20) and is a saddle point for all possible 
values of K except K = 0. We have shown the phase plane for two different cases: 
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A B 

FIGURE 2. The upper half of a high subsonic flow past a symmetrical airfoil. 

decelerating flow K > 0 and accelerating flow K < 0 in figures 3 and 4. The figures 
have been drawn using non-dimensional variables 5, W, and Cw defined by 

(4.22) 

where L is the length scale of the problem and 6 is the non-dimensional first- 
order small quantity used earlier. A very useful choice of L is L = a*/K for K + 0. 

The integral curves in the phase plane represent steady solutions of (4.17). 
The basic undisturbed solution is represented by the line w = 0. As we are con- 
sidering perturbations bounded in space, at  any instant a perturbation of our 
basic steady solution can be represented in the phase plane by a closed curve a 
part of whose boundary is the line w = 0 as shown by continuous curvesin figures 3 
and 4. In  a perturbation, the space rate of change of w as we move with the wave 
velocity c,w - KE is Ko/(c,w - Kg), which is also the space rate of change of w 
as we move along the integral curves of the characteristic equations. Therefore, 
during the propagation, the different points of the boundary curve of the distur- 
bance will move along the integral curves of (4.20). 

Let rS be the area bounded by an arbitrary closed curve in the 6) w plane 
whose points move in accordance with (4.20). As the divergence of the vector 
field given by the right-hand side of (4.20) is zero, i.e. 

it  follows that the value of the area S remains constant and equal to its initial 
value 8,. Thus we get the important pulse area rule (Kantrowitz 1958) that the 
area occupied by a disturbance in the g) w plane remains constant as the distur- 
bance propagates. The area is conserved even if a weak shock appears in the pulse 
(Kantrowitz 1958; Landau & Lifshitz 1959, p. 374). Using the rule of constant 
area, we can follow the complete history of the pulse in the phase plane of (4.20). 
The following results do not differ in principle from those of Kantrowitz and this 
shows that the behaviour of sonic pulses in two- or three-dimensional flow does 
not differ significantly from that of sonic pulses in one-dimensional flow. 
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FIGURE 3. Phase plane of the characteristic equations for a decelerating steady flow: 
K > 0 ;  if = 1, y = 1.4. (a)  A perturbation with positive values of w attains a triangular 
form in subsonic region. (b)  A perturbation with negative values of w attains a triangular 
form in the supersonic region. (c) Positive and negative areas in two parts of the pulse 
interact: the pulse weakens and may disappear as in this case. Shock is always a t  6 = 0. 
(a) Positive and negative areas in two parts of the pulse are trapped separately, changing 
both upstream and downstream parts of the flow. 

We can prescribe the initial shape of the pulse at t = 0 by the function 

w = OO(t0b). (4.23) 

At any other time, the shape of the pulse can be obtained in the form 

0 = G , t )  (4.24) 

by eliminating the parameter to from (4.21) and (4.23). As the pulse propagates, 
the slope aw/a[ at any point moving with the pulse changes and we can easily 
calculate the slope at any time in terms of the initial slope dwo/dEo from equations 
(4.21): 

Now we discuss three particular cases separately. 

(4.25) 

Case 1. Flows decelerating through the speed of sound, K > 0 

Equation (4.25) shows that the slope awlat  at a point moving with the pulse be- 
comes infinite at  some time if initial slope duo/dto < 0, or tends to a limiting value 
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FIGURE 4. Phase plane of the characteristic equations for an accelerating steady flow: 
K < 0, y = 1.4. (a) K = - 1. Acceleration at the critical point is sufficiently large and 
therefore a continuous pulse remains continuous as it vanishes from the transonic region. 
(b)  K = - 0.5. Acceleration a t  the critical point is small and a shock appears in the com- 
pression region before the disturbance vanishes from the transonic region. 

2K/cw if dwo/dto > 0. Therefore, a shock wave always appears in a continuous 
pulse a t  a time 

(4.26) 

where (dwo/d<o)min is the smallest value of the negative slope in the pulse. The 
shock appears in the interior if the pulse has a point of inflexion in the compres- 
sion region. The motion of the shock can be easily followed by using the result 
that for a weak shock its velocity is the mean of the characteristic velocities 
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FIGURE 5 .  Shape of the pulse with positive w for some intermediate time 
when there is initially a point of inflexion in the compression region. 

c,wu - K t s  just ahead and cumb - K t s  just behind the shock. Thus the shock posi- 

(4.27) 
tion ts satisfies 

dts/dt  = - ES + 8CW{%(fl,, t )  + w,(tss, t)}.  

Equations (4.25) and (4.21) show that the slope reaches its limiting value as 
exp ( - 2Kt) tends to zero but a general point of the phase plane tends to infinity 
(or the origin) as exp (Kt )  (or exp ( -Kt)) .  Therefore, the slope reaches its limiting 
value faster than a characteristic approaches the critical point or infinity. There- 
fore, after sufficiently long time, any disturbance will assume a triangular shape 
bounded at  its leading edge by a shock wave. When the initial shape contains a 
point of inflexion in the region where the slope is negative, the shape of the pulse 
for some intermediate time will be as shown in figure 5 with a shock in the interior 
of the pulse. Since the area of the pulse remains constant, a close examination of 
the phase plane shows that the pulse will ultimately become stationary with two 
sides bounded by the straight lines w = 0 and w = (2K/cW) 5 and the third side 
bounded by a straight line parallel to E = 0 representing a shock wave. The dis- 
tance of the shock from the origin can be easily obtained by equating the area of 
the triangle with the initial area. I n  figure 3 we have shown the history of four 
types of disturbances. If w is positive the pulse is trapped in the subsonic part 
of the flow, changing it partially into a supersonic flow. On the other hand, if 
w is negative it is trapped in the supersonic region, changing it partially into a 
subsonic one. A numerical evaluation of the pulse shape using (4.2 1)  and a numeri- 
cal integration of (4.27) from the formation of the shock for an initially parabolic 
pulse shows that tS approaches its limiting value a long time after the pulse has 
attained a triangular shape. 

Case 2. Flows accelerating through the speed of sound, K < 0 

Equation (4.25) shows that the slope awlat  tends to zero as t tends to infinity 
where dq,/d[o > - 2 )  K [  /co and tends to infinity where dwo/dE0 < - 21 Kl/cW. 
Therefore, a continuous pulse will remain continuous if the initial shape is not 
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very steep in the compression region (dwo/dEo < 0). A shock appears a t  time T 
given by (4.26) when the shape is sufficiently steep in the compression region so 
that dw0/d& < - 2(Kl/c ,  is satisfied. 

Examination of the phase plane shows that the amplitude of the pulse con- 
tinuously decreases and that both ends of the pulse move away from the sonic 
point. Of course, the area occupied by the pulse remains constant. The disturbance 
decays and ultimately vanishes from the transonic region. The history of such 
disturbances has been shown in figure 4. 

Case 3. K = 0 

In  the case of high subsonic flows past bodies, an embedded supersonic flow 
appears and there exists one curve on the sonic surface (a point on the sonic curve 
in two-dimensional flows, see figure 2) where the streamlines are tangential to 
the sonic surface. If x* is a point on such a curve, the fluid particles attain a maxi- 
mum velocity here and K = 0. Equation (4.17) reduces to 

(4.28) 

In  the phase plane the characteristic equations reduce to a family of straight lines 
parallel to w = 0. If we consider an initially continuous pulse, the amplitude 
remains constant until the shock wave which appears a t  a time 

in the compression region has been overtaken by the maximum (or minimum) 
value of w. The trailing front remains fixed at its initial position and the leading 
front bounded by a shock wave moves farther and farther away from the trailing 
front. The disturbance ultimately decays and vanishes from the transonic region 
as shown in figure 6. 

Thus we conclude that a transonic flow is stable with respect to small dis- 
turbances everywhere except in the neighbourhood of the points where the flow 
is strictly decelerating. In  the second case the flow is neutrally stable in the sense 
that the disturbance is trapped and attains a stationary position. In  real flows 
disturbances will be continuoudy fed into the transonic region but, since the 
disturbances will be random in nature, we expect the positive and negative areas 
of the trapped waves to be almost equal, leading to the presence of weak shocks 
in decelerating portions of the transonic flow. Our analysis does not really contra- 
dict the conclusions of Nieuwland & Spee that a continuously decelerating tran- 
sonic flow can be regarded as stable for all practical purposes, however, we cannot 
get a continuously decelerating flow which is completely free from weak shocks. 
Whenever the boundary conditions a t  the aerofoil or in the free stream are 
changed slightly from the theoretical value, disturbances of the same sign in 
area will be continuously created and the flow will be partly replaced by 
an accelerating flow which is either terminated by a shock or headed by a shock 
with strength depending on the deviation of the boundary condition. This is clear- 
ly shown from the results of experiments mentioned by Spee. Spee has shown that 
two-dimensional turning effect is important, at least for waves originating from 
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FIGURE 6. K = 0. A disturbance with positive values of w first deforms with constant 
amplitude until a shock is formed which starts moving to the right. The pulse ultimately 
vanishes from the sonic region. 

regions away from the sonic line and, therefore, in order to get a more realistic 
local picture of the transonic waves we must improve the present theory so that 
it takes account of the real two- and three-dimensional effects, and this does not 
seem to be difficult. We shall be able to present an improved form of the theory in 
near future. The streamlines normal to the direction of the wave front play a 
very important role. For flows past convex bodies they are generally pushed 
together where the flow is accelerating and in this region they will have a tendency 
to converge (figure 2). This will lead to some increase in:the amplitude of the pulse. 
In  the region where the flow is decelerating, they have a tendency to diverge 
from each other and this will result in a decrease in the amplitude of the pulse. 

In  the work of Kuo on two-dimensional transonic flows, the curvature of the 
body appears in the result but he concludes that the curvature of the body plays 
no decisive role in the question of stability. This is also evident from our analysis 
as it is completely independent of the curvature of the body. The effect of curva- 
ture should appear through the convergence or divergence of the streamlines. 
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